
J. Fluid Mech. (2007), vol. 584, pp. 69–102. c© 2007 Cambridge University Press

doi:10.1017/S0022112007006301 Printed in the United Kingdom

69

Recurrence of travelling waves in
transitional pipe flow

R. R. KERSWELL1 AND O. R. TUTTY2

1Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK
2School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ, UK

(Received 30 October 2006 and in revised form 26 February 2007)

The recent theoretical discovery of families of unstable travelling-wave solutions in
pipe flow at Reynolds numbers lower than the transitional range, naturally raises
the question of their relevance to the turbulent transition process. Here, a series of
numerical experiments are conducted in which we look for the spatial signature of
these travelling waves in transitionary flows. Working within a periodic pipe of 5D
(diameters) length, we find that travelling waves with low wall shear stresses (lower
branch solutions) are on a surface in phase space which separates initial conditions
which uneventfully relaminarize and those which lead to a turbulent evolution. This
dividing surface (a separatrix if turbulence is a sustained state) is then minimally the
union of the stable manifolds of all these travelling waves. Evidence for recurrent
travelling-wave visits is found in both 5D and 10D long periodic pipes, but only for
those travelling waves with low-to-intermediate wall shear stress and for less than
about 10 % of the time in turbulent flow at Re = 2400. Given this, it seems unlikely
that the mean turbulent properties such as wall shear stress can be predicted as an
expansion solely over the travelling waves in which their individual properties are
appropriately weighted. Instead the onus is on isolating further dynamical structures
such as periodic orbits and including them in any such expansion.

1. Introduction
Wall-bounded shear flows are of great practical importance, yet their transition to

turbulence is still poorly understood. Typically, the laminar-flow solution is linearly
stable (e.g. plane Couette flow, pipe flow) or if linearly unstable, only well beyond the
regime where transition occurs (e.g. channel flow). As a result, transition is an abrupt
process triggered by a perturbation of sufficient amplitude. Generically, this could be
expected to lead to an intermediate state of reduced symmetry, but, in fact, the flow
always immediately becomes temporally and spatially complicated. A new direction
in rationalizing this phenomenon revolves around identifying alternative solutions
(beyond the laminar state) to the governing Navier–Stokes equations. In the past
few years, such solutions in the form of steady states or travelling waves have been
found in plane Couette flow (Nagata 1990; Clever & Busse 1992, 1997; Waleffe 1998),
channel flow (Itano & Toh 2001; Waleffe 2001, 2003), an autonomous wall flow
(Jiménez & Simens 2001), and most recently, pipe flow (Faisst & Eckhardt 2003;
Wedin & Kerswell 2004). Invariably, these solutions are saddle points in phase space.
The idea is that through their stable and unstable manifolds and the interconnections
between them together with the appearance of periodic orbits, phase space becomes
sufficiently complicated to support ‘turbulent’ trajectories.
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Gathering supporting evidence for this scenario is in its infancy, especially for
spatially extended systems, but progress is being made. In reduced numerical models
and spatially confined systems, Eckhardt and coworkers have reported statistical
evidence to suggest that these saddles collectively produce a chaotic repellor, at least at
low Reynolds numbers (Schmiegel & Eckhardt 1997; Schmiegel 1999; Eckhardt et al.
2002; Faisst & Eckhardt 2004; Eckhardt et al. 2007). Other work has concentrated
on establishing connections between specific flow behaviour and underlying nonlinear
solutions present. In channel flow, for example, Itano & Toh (2001) interpret wall
turbulent ‘bursting’ events with flow along the unstable manifold of a travelling-wave
solution. They also managed to isolate a periodic-looking solution on the basin
boundary of the turbulence by continually adjusting a trajectory such that it neither
relaminarized nor became turbulent (Toh & Itano 2003) (see Skufca, Yorke &
Eckhardt 2006 for an equivalent calculation in a model system). Jiménez et al.
(2005) studied both channel flow and plane Couette flow in an effort to relate
near-wall turbulent events to the large number of known nonlinear solutions. They
concluded that the turbulence stayed close to the upper-branch travelling waves,
as far as comparing simple statistics of the flow field such as maximum (over
space) wall-normal and streamwise components were concerned. Another approach
has focused upon identifying isolated periodic solutions directly from numerically
integrated turbulent trajectories using a Newton–Raphson technique. In both the
case of plane Couette flow (Kawahara & Kida 2001) and highly-symmetric forced
box turbulence (van Veen, Kida & Kawahara 2006), the authors claim to find one
periodic orbit which seems to share the same mean properties as the turbulent
attractor.

In pipe flow, the only work so far aiming to establish the physical relevance of the
recently discovered travelling waves, has been experimental (Hof et al. 2004, 2005).
By analysing the flow structure across turbulent pipe flow (both of ‘puff’ and ‘slug’
type – see Wygnanski & Champagne 1973), good correspondence was found, at least
occasionally, with the outer symmetrically arranged ring of fast ‘streaks’ (streamwise
velocity anomalies) which is one of the dominant features of the travelling waves.
The match is less clear, however, with regard to the complementary slow streaks
centred around the pipe axis as well as with the smaller cross-stream velocities (e.g.
figures 2E and 2F of Hof et al. 2004). The purpose of this paper is to build on this
work by carrying out a detailed quantitative study which can explore how closely the
travelling waves are reproduced or ‘visited’ in phase space and the frequency of such
visits using direct numerical simulations. The decision as to whether the flow has
‘visited’ a travelling wave is made by individually comparing the spatial structure of
the instantaneous flow with that of each of the full set of travelling waves currently
known to exist in the system. A concurrent numerical study by Schneider, Eckhardt &
Vollmer (2007) has chosen instead to focus on identifying coherent streak structures
near the outer pipe wall by examining the azimuthal correlation of the downstream
velocity there. Their results on how often the flow adopts a coherent streak structure
near the wall provide a nice complementary upper estimate on how often we find that
travelling waves are visited. If it emerges that turbulent pipe flow can be understood
as an effectively random switching between the neighbourhoods of these travelling
waves, then an appropriately weighted expansion across the ‘active’ travelling waves
visited may provide a useful predictor of the turbulent flow properties. This presumes
that some version of periodic orbit theory developed in low-dimensional dynamical
systems (e.g. Cvitanovic 1988; Artuso, Aurell & Cvitanovic 1990a, b) may carry over
to this very high (formally infinite) dimensional setting.
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The structure of the paper is as follows. Section 2 begins by briefly describing
the numerical method used to solve the Navier–Stokes equations before discussing
reasonable measures chosen to quantify if, and how well, the flow approaches a
travelling wave (TW) solution. There is a certain amount of arbitrariness in this
choice because the TWs are fully nonlinear solutions, not obviously orthogonal under
any inner product. Hence, some experimentation has been necessary before a final
choice on the exact ‘correlation’ functions to evaluate has been made. Given also that
the TWs are parameterized continuously by their axial wavelength (albeit over a finite
range), it has been convenient to impose a strict periodicity in the pipe to discretize
the TWs which can exist in the system. As a result, a periodic pipe of length 5D

has been used for the majority of the results. Even then, 37 TWs of two-, three- and
four-fold rotational symmetry about the axis can be found at a Reynolds number of
2400. These are briefly described in § 3, together with their stability. In § 4, we show
numerical evidence that some of the TWs are visited, but not all and for only part of
the time. In § 5, the statistical frequency of these visits is quantified by examining the
correlation data from across a number of runs. Finally, a discussion follows in § 6.

2. Formulation
2.1. Numerics

The Navier–Stokes equation and solenoidal condition for the flow of an
incompressible Newtonian fluid along a circular straight pipe under the action of an
imposed pressure gradient are

∂t u + u · ∇u +
1

ρ
∇p = ν∇2u, ∇ · u = 0, (2.1)

where ν is the kinematic viscosity, p the pressure and ρ the constant density. Non-
dimensionalizing the system using U the mean axial speed and the pipe radius D/2,
where D is the diameter, gives rise to the Reynolds number Re : = UD/ν. A constant
mass flow flow rate – or equivalently Re – is maintained along the pipe at all times. A
numerical solution for the primitive variables (velocity and pressure) was developed
in cylindrical coordinates (s, θ, z) using finite differences in the radial direction (s) and
Fourier modes for z and θ . The time stepping was performed using the third-order
Runge–Kutta scheme of Nikitin (2006). Hereinafter a quoted numerical resolution of
(N, M, K) corresponds to N + 1 equally-spaced radial points (i.e. a grid step of 1/N

where 0 � s � 1) and Fourier expansions in θ and z of wavenumbers −M/2, . . . , M/2
and (−K/2, . . . , K/2)π/L, respectively, where L diameters is the nominal length over
which periodicity is imposed. As discussed below, the main choice of pipe length was
L = 5: for this geometry, a coarse grid was (25, 32, 30), an intermediate grid (50, 48, 40)
and a fine grid (50, 60, 60): equivalent grids in longer pipes were used (e.g. a fine 10D-
grid was (50, 60, 120)). Commonly in studies of this type, the grid is stretched in the
radial direction as the highest resolution is required near the wall. However, here
there was little difference between the results obtained with uniform and non-uniform
grids. This is not surprising given the nature of the flow at the Reynolds number
considered in this study, as can be seen in figure 3.

In addition to checks of specific components of the code using analytic test solutions,
a series of calculations was performed using as initial conditions a TW solution plus a
perturbation in the form of the leading (unstable) eigenfunction. Good agreement was
obtained for the growth of the disturbance and that predicted from the eigenvalue.
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Importantly, the code was also cross-validated with another time-stepping code based
on velocity potentials (Willis & Kerswell 2007).

2.2. Travelling waves

The TWs so far identified (Faisst & Eckhardt 2003; Wedin & Kerswell 2004) are
arranged into symmetry classes of m-fold rotational symmetry about the axis and
then continuously parameterized by their axial wavenumber across a finite range.
TWs of one-fold to six-fold symmetry have been found (Kerswell 2005), but only
two-, three- and four-fold TWs are currently known to exist below Re =2485. Within
each symmetry class, the TWs appear through saddle node bifurcations so that close
to the saddle node point there is a well-defined upper- and lower-branch solution for
a given wavenumber. For higher Re, the solution surfaces typically kink and fold back
on themselves so that multiple pairs of branches can coexist at the same wavenumber
(e.g. figure 10 of Wedin & Kerswell 2004).

Imposing a pipe periodicity, immediately reduces the continuum of TWs present
down to a discrete number which can fit into the pipe. This is a crucial simplification
which means the matching procedure adopted below can monitor all the TWs available
to the flow. The main choice of a 5D long pipe was a compromise between the need
to keep the number of TWs to a manageable size (helped by a shorter pipe) and
the need to have a dynamical system which could support turbulent behaviour at
a value of Re where the TWs are fully resolvable (helped by a longer pipe). This
pipe length has also been studied before (Eggels et al. 1994; Faisst & Eckhardt 2004)
and sustained turbulence predicted for Re > 2250 (Faisst & Eckhardt 2004). This
short length, of course, precludes capturing turbulent spatiotemporal features such as
‘puffs’ (Wygnanski & Champagne 1973) which typically extend over 20D, but does
allow an examination of ‘temporal’ turbulence which, when triggered, fills the whole
pipe.

Figures 1 and 2 show the result of tracing out all the two-, three- and four-fold
solution branches in the friction factor–axial wavelength plane at Re =2400 where
the friction factor (Schlichting 1968) is defined as

Λ := − 1

ρ

dp

dz

/
U 2

2D
, (2.2)

with dp/dz being the mean pressure gradient (Λlam := 64/Re is the laminar value).
The curves are similar but less contorted at Re= 2000 (Kerswell 2005) and Re= 2200
(not shown). The vertical dotted lines drawn at axial wavenumbers α =0.625n where
n=1, 2, . . . , 5 indicate the TWs which fit in the pipe which is actually taken to be
π/0.625 = 5.0265 diameters long. The m-fold symmetry class, the letter label and
wavenumber are used to identify the TWs in what follows. For example, the TW with
wavenumber 1.25 and lowest friction factor in figure 1 is the 3b 1.25 TW. For this
pipe geometry and Re, there are 37 TWs (6 two-fold, 22 three-fold and 9 four-fold
rotationally symmetric TWs) which can be numerically resolved and used to match
against the flow.

2.3. Matching

As fully nonlinear solutions, the TWs do not possess any simple orthogonality with
respect to an inner product. Therefore establishing when a directly numerically
simulated flow, uDNS, approaches a chosen TW velocity field, uTW, is not a
straightforward case of projection. Given this, a number of ad hoc ‘correlation’
functions were developed and tested to measure how close the flow comes momentarily
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Figure 1. Solution branch for three-fold rotationally symmetric travelling waves plotted on
a friction factor versus axial wavenumber plot at Re= 2400. The lower dashed line represents
the lower bound given by the Hagen–Poiseuille solution (Λlam = 64/Re) and the upper dashed
line corresponds to the Re= 2400 value of the log-law parameterization of experimental data
1/

√
Λ= 2.0 log(Rem

√
Λ) − 0.8 (see Schlichting 1968, equation (20.30)). The solution branch is

shown only as far as it is assured to be resolved (hence the loose ends: the main mapping
resolution was (8, 30, 6) in the truncation nomenclature of Wedin & Kerswell 2004). The dotted
vertical lines indicate the wavenumbers (α = 0.625n in units of 2/D, n= 1, 2, 3, 4, 5) which fit
into a pipe of length π/0.625 D long. The letters are used to label each allowable TW together
with the wavenumber.
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Figure 2. The equivalent of figure 1 but for the two-fold (left) and four-fold (right) rotationally
symmetric travelling waves. Typical truncations used to resolve this solutions were (9, 25, 7)
for the two-fold case and (6, 40, 5) for the four-fold case.
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to a TW. The approach was to construct an integral based on the velocity fields uDNS

and uTW over one wavelength 2π/α of the TW near the middle of the pipe. The
correlation functions found most useful and thereby adopted were a normalized inner
product based on the total velocity fields,

Itot(t) = max
θ0,z0

[
〈vDNS, vTW〉√

〈vDNS, vDNS〉
√

〈vTW, vTW〉

]
, (2.3)

once the mean profile of the TW

wTW(s) :=
α

4π2

∫ 2π/α

0

∫ 2π

0

wTW(s, θ, z) dθ dz (2.4)

had been subtracted from both velocity fields

vDNS := uDNS(s, θ0 + θ, z0 + z) − wTW(s)ẑ,

vTW := uTW(s, θ, z) − wTW(s)ẑ,

and an inner product using the cross-stream velocity components

Iuv(t) = max
θ0,z0

[
〈u⊥

DNS, u⊥
TW〉√

〈u⊥
DNS, u⊥

DNS〉
√

〈u⊥
TW, u⊥

TW〉

]
. (2.5)

Here, u⊥ = (u, v, 0) is the cross-stream velocity part of u, and

〈u1, u2〉 :=
α

2π2

∫ 2π/α

0

∫ 2π

0

∫ 1

0

u1 · u2 s ds dθ dz (2.6)

is the (usual) inner product. The phase optimization over θ0 and z0 is necessary because
rotated and translated travelling waves are still solutions owing to the symmetries of
the flow.

One obvious alternative measure would be to use the velocity fields minus the
laminar flow, as is commonly done in investigations of this type (including results
presented below). However, it has the major disadvantage that it can produce large
values of Itot, even when the flows do not match in any real sense. For example,
figure 13 shows Itot for a match to TW 2a 1.25 for a run starting from TW 3b 3.125.
The three-fold symmetry of the starting condition persists for some time (until
t ≈ 130D/U ), and during this initial phase the correlation for the match to TW
2a 1.25 with two-fold symmetry is low (below 0.1), as might be expected. However, if
the velocity minus the laminar value was used for the correlation, then Itot would have
a value of around 0.7 throughout this initial stage. Further, once the initial symmetry
has broken, the match to 2a 1.25 produces values of Itot of around 0.6, as shown in
figure 13. Using the laminar profile as a reference produces correlations of around
0.9. The relatively high value of the correlation coefficient during the initial phase,
even though the flows have different symmetries, can be explained by the shape of the
characteristic mean profile for the TWs. In common with turbulent flow in general,
these show an increase in the streamwise velocity near the wall, and a decrease in the
centre of the pipe (see Wedin & Kerswell 2004, figure 22) compared with the laminar
profile. The high value of the correlation coefficient when using the laminar profile
as the reference reflects this commonality in shape. Adopting the mean profile of the
TW as reference avoids these misleadingly high correlations, but results in what may
appear to be a relatively low value of Itot even when there is a good match between
the DNS flow and the TW.
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However, Itot is not in itself a sufficient measure for a match. Even when the
mean profile of the TW has been subtracted, the streamwise (streak) velocities are
typically an order of magnitude larger than the cross-stream velocities and hence
their matching contribution tends to dominate Itot, to the extent that there is little
difference between Itot and Iw (the equivalent of Iuv but using the streamwise velocity
component only). Hence, the introduction of the second measure Iuv .

By design, Itot and Iuv can only take values in the interval [−1, 1] with a value
1 indicating a perfect match. The phase optimization over θ0 and z0 (carried out
by systematically evaluating all the options over the [0, 2π) × [−π/α, π/α) grid) in
practice ensured that the correlations were never very negative, typically lying in the
interval [−0.2, 0.2]. Experience indicated that there is evidence for a TW visit if Itot

and Iuv reach values of 0.5 and above (although more on this below).
A number of other measures were tried. An inner product using the streamwise

vorticity, which provides a single measure of the cross-stream flow, was found to
shadow Iuv , although at a lower level. The symmetry assumed for the TWs (see (2.7)
below) ensures that the cross-stream velocity is zero along the axis of the pipe. This
would not be expected to occur over an extended length of the pipe in fully turbulent
flow. Hence, an inner product over a subset of the domain excluding the central
portion could be suitable. This was investigated, and it was found that restricting
the domain to 1/2 � s � 1 produced somewhat higher correlations, particularly for
Iuv , but, again, a similar pattern of behaviour. Hence, these other measures could be
used to produce essentially the same results by adjusting the level of correlation that
would be regarded as giving a good match.

Correlation functions such as those introduced here measure shape only, and not
amplitude. In theory, it would be possible to have a high correlation between velocity
fields, but a significant difference in the values of the velocity. The value of the
perturbation kinetic energy and the mean wall shear stress can be used to ensure that
uDNS and uTW are similar, or to choose the best match when there is more than one
candidate. Some of the TWs are highly correlated (values greater then 0.95 have been
observed), so that, at a specific time, using these measures, there can be a good match
of the flow to more than one TW. One such case will be considered below.

The matching was performed by maximizing the value of Iuv over all possible values
of θ0 and z0. Itot was then calculated for the same orientation. Itot is not suitable as
the primary measure as it is so heavily dominated by the streamwise component that
the cross-stream structure of the flow would, in effect, be discounted when choosing
the ‘best’ match.

2.4. Travelling wave stability

An obvious way to start the DNS runs is to use a TW together with some small
perturbation as an initial condition. If this perturbation is unstructured, for example,
by relying on numerical discretization errors, the flow takes a long time to exit the
neighbourhood of the TW and wastes CPU time. A better strategy is to find the
unstable eigendirections of the TW and to use the most unstable eigenfunction with a
small amplitude as the perturbation. Four ‘lower’ branch TWs – 2b 1.25, 3a 2.5, 3h 2.5
and 4b 3.125 – and four ‘upper’ branch TWs – 2a 1.25, 3b 3.125, 3j 2.5 and 4c 3.125 –
were selected as starting TWs. The distinction between upper or lower branch solutions
can be ambiguous when the solution surface is as convoluted as in figure 1. Here, we
consider that TWs with high friction factors are upper-branch solutions and those
with low friction factors are lower, branch solutions. The eight choices made, represent
extreme and therefore unambiguous examples under this categorization.
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Number of unstable Largest growth rate Resolution
Branch TW eigenvalues (in units of U/D) (M, N, L)

Lower 2b 1.25 1r 1.1 × 10−1 (9, 25, 7)
3a 2.5 2r 2.1 × 10−1 (8, 30, 6)
3h 2.5 3r+2c 1.7 × 10−1 (8, 30, 6)

4b 3.125 1r+2c 2.6 × 10−1 (6, 40, 5)

Upper 2a 1.25 4c 6.6 × 10−2 (9, 25, 8)
3b 3.125 2c 3 × 10−3 (8, 30, 5)

3j 2.5 6c 1.7 × 10−1 (8, 30, 6)
4c 3.125 6c 3.7 × 10−1 (6, 40, 5)

Table 1. The stability properties of typical upper and lower travelling waves at Re= 2400:
r and c indicate the number of real and complex eigenvalues, respectively. The resolution
(M, N, L) is the same for the travelling waves and the stability calculation and indicates the
azimuthal, radial and axial resolution, respectively (see Wedin & Kerswell 2004 for details).
The unstable eigenvalues all correspond to disturbances possessing the same shift-and-reflect
symmetry as the travelling wave.

The stability properties of the eight chosen TWs are given in table 1. The travelling
waves all possess the shift-and-reflect symmetry S

S : (s, θ, z) → (s, −θ, z + π/α), S : (u, v, w, p) → (u, −v, w, p), (2.7)

so permitted linear disturbances can be partitioned into those either symmetric or
antisymmetric with respect to S. When checked, the TWs were invariably stable to
antisymmetric disturbances so table 1 concentrates exclusively on the situation in the
S-symmetric subspace. The number of unstable directions is strikingly small given the
large degrees of freedom involved (e.g. O(15 000)) and the size of the growth rates –
O(0.1 U/D) indicate inertial instabilities. Figure 3 shows the structure of the most
unstable eigenfunctions for the lower branch TWs 2b 1.25 and 3a 2.5. The 3a 2.5 TW
gives a particularly clear example of how an unstable eigenfunction is concentrated
in the regions of maximum shear in the TW streak velocity.

3. Results
A series of runs were performed by taking as initial conditions each of the selected

eight upper and lower TWs perturbed by a small amount of their most unstable
eigenfunction. Since this perturbation can be added or subtracted, 16 runs were in
fact done. This protocol highlighted a fundamental difference between the upper-
and lower-branch TWs. For all the lower branch TWs tested, starting the run in one
sense along the TWs most unstable manifold invariably led to an uneventful gradual
relaminarisation, whereas starting in the other sense always produced a turbulent
evolution (see figure 4). Both signs of perturbation, in contrast, produced a turbulent
trajectory for the upper-branch TWs. This implies that the four lower-branch TWs
(and by implication other lower-branch TWs) and their stable manifolds are part of
a boundary dividing regions of phase space which lead to the two different types
of behaviour. At least part of their unstable manifolds are normal to this surface,
directed towards either the laminar or turbulent states. The fact that lower-branch
solutions may be embedded in such a dividing surface has been suggested before
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Figure 3. The travelling waves 2b 1.25 (a) and 3a 2.5 (c) and their most unstable
eigenfunctions ((b) for 2b 1.25 and (d) for 3a 2.5). The arrows indicate the cross-stream
velocities (larger arrows corresponding to larger speeds) for all four plots. The shading
represents the axial velocity for the eigenfunctions whereas for the travelling waves, the axial
velocity differential away from the laminar flow corresponding to the same mass flux is plotted
(dark most negative – slow streaks; and light most positive – fast streaks). The same contour
levels are used throughout with the eigenfunctions renormalized so that their largest axial
velocity is set to the largest absolute contour level (the shading outside the pipe indicates 0:
contours levels range from −0.417U to 0.266U in 8 steps).

(e.g. Waleffe 2003) despite only one known example in channel flow (Itano & Toh
2001). The results here provide a more systematic verification of this idea. The surface
– formally a separatrix if the turbulence is a sustained state – is undoubtedly more
than just a union of lower-branch TWs and their stable manifolds. In plane Couette
flow, for example, Kawahara (2005) has found a periodic orbit embedded in the
separatrix.

In the current situation, this dividing surface has deliberately not been called a
‘separatrix’ as the second initial observation when doing these runs at Re= 2400
with a 5D pipe is that the turbulence is only transitory. In other words, the laminar
state is still the global attractor at Re =2400 in a 5D periodic pipe although the
flow can experience a long but ultimately finite turbulent episode. Not surprisingly,
the length of these turbulent transients seems to depend sensitively on the exact
numerical resolution used. This is particularly true with regard to the azimuthal
and axial resolution – reducing this too far can produce what looks to be sustained
turbulence since the excitation of small scales and the ensuing enhanced dissipation
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Figure 4. The disturbance kinetic energy per unit mass (see (3.1)), in units of U 2 versus wall
shear stress τ (see (3.2)) in units of −8ρU 2/Re for uDNS starting at the four lower branch
TWs considered: 2b 1.25 (�), 3a 2.5 (�), 3h 2.5 (�) and 4b 3.125 (�). The solid line indicates
the turbulent evolution for one sign of the eigenvalue perturbation for each TW and the
thick dashed line traces out the uneventful relaminarization for the other. The laminar state
is represented by the point (1, 0). All the TWs present are also plotted: 	, two-fold TWs; +,
three-fold TWs; �, four-fold TWs. The inset is a blow-up near the laminar point at (1, 0) to
highlight the relaminarization.

which tends to relaminarize the flow are suppressed (Orszag & Kells 1980). We
observed that turbulence remains transient when reducing the resolution from the
working resolution (50, 60, 60) to (25, 30, 30) or (50, 24, 24), but looks to be sustained
at (50, 16, 16) over a time greater than 3000D/U : the resolution of Faisst & Eckhardt
(2004) which predicts sustained turbulence at Re= 2250 is somewhere in between
these last two choices. The issue of exactly when (or indeed if) pipe flow turbulence
becomes sustained is an area of much current interest (Hof et al. 2006; Peixinho &
Mullin 2006; Lagha & Manneville 2007; Willis & Kerswell 2007).

The two runs started around the lower branch TW 4b 3.125 illustrate the general
behaviour well. Figure 5 plots the disturbance kinetic energy (per unit mass)

KE :=
1

2πL

∫ 2L

0

∫ 2π

0

∫ 1

0

1
2
(u − ulam)2 s ds dθ dz (3.1)

of the flow versus the mean wall shear stress

τ :=
1

2πLD

∫ 2L

0

∫ 2π

0

ρν
∂w

∂s

∣∣∣∣
s=1

dθ dz

[
= − 1

8
ρU 2 Λ =

Λ

Λlam

(−8ρU 2/Re)

]
(3.2)

for the flow evolution together with all 37 of the TWs present. Strictly, when
comparing with values for a TW, the kinetic energy and mean wall shear should
be calculated for the section of the pipe containing the best match. However, for
a pipe of this length, flow structures tend to persist over the full length of the
pipe, particularly in the near-wall region containing the streaks. The wall shear stress
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Figure 5. The disturbance kinetic energy per unit mass, in units of U 2 versus wall shear stress
τ in units of −8ρU 2/Re for uDNS starting at TW 4b 3.125 (�). The solid line indicates the
turbulent evolution for one sign of the eigenvalue perturbation and the thick dashed line traces
out the uneventful relaminarization for the other (respectively, 4b 3.125(+/−)). The laminar
state is represented by the point (1, 0). All the TWs present are also plotted: 	, two-fold TWs;
+, three-fold TWs; �, four-fold TWs. Filled symbols indicate TWs which appear to be visited
by uDNS and the numbered dots correspond to the times of visits as determined by examining
Itot and Iuv . In chronological order: 1 – 4f 3.125 (lower �); 2 – 2b 0.625 (� furthest from 3);
3 – 2a 1.25 (closer �); 4 – 4c 3.125 (upper �) and 5 – 3a 3.125 (�).

depends only on the streamwise velocity, which also provides the dominant component
of the kinetic energy perturbation. As a result, there is usually little difference in these
quantities for the full pipe and a section corresponding to one of the travelling waves.
Larger differences were observed in longer pipes.

For one sign of the eigenfunction perturbation, the flow tamely relaminarizes
whereas for the other it executes a long turbulent transient. During this latter
evolution, there is evidence of close visits to at least five TWs. The first (labelled
‘1’ in figure 5) is to 4f 3.125 and occurs during the early stages as the flow trajectory
moves away from 4b 3.125 (see figure 6). The quality of this match is extremely high,
suggesting that there may be a heteroclinic connection between the two TWs (see also
figure 4 which shows the trajectory passing straight over the open circle representing
4f 3.125). The fact that even at t = 0 there is already a considerable correlation with
4f 3.125 indicates that 4b 3.125 is structurally similar to 4f 3.125, an observation
which is also true for some other groupings of TWs within the same rotational
symmetry class. Figure 6 also shows the correlation signal for 4c 3.125 which has a
very close visit after 120 D/U (labelled ‘4’). Taken together, the correlation functions
for the other four-fold TWs indicate that the flow retains its four-fold symmetry until
about 130 D/U (this was verified by examining the transient solution), whereupon it
switches to a predominantly three-fold symmetry. Figure 7 shows this switch-over well
via the correlation function Itot for 3a 3.125. This TW is the best candidate for a close
visit (labelled ‘5’ at t ∼ 250 D/U ) over all the three-fold symmetric TWs. Examining
the instantaneous flow field at point 5 (figure 8) shows clear evidence of three equally
spaced fast streaks around the outside of the pipe like 3a 3.125 which are fairly
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Figure 6. Itot and Iuv (inset) as a function of time for TWs 4f 3.125 (solid line) and 4c 3.125
(dashed line) starting at TW 4b 3.125. Dots label the times of probable closest visits to each
TW (times ‘1’ and ‘4’ coincide with those in figure 5).
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Figure 7. Itot and Iuv (inset) as a function of time for TW 3a 3.125 starting at TW 4b 3.125.
The dot labels the time of closest visit (corresponding to ‘5’ in figure 5).
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Figure 8. Comparison plots of the DNS flow (left-hand column) and the TW 3a 3.125
(right-hand column) at point 5 in figure 7. The top row shows the velocity fields at the
streamwise position of maximum Itot(z) + Iuv(z) for a cross-section of the pipe with the
integration in the inner product performed over s and θ . The shading represents the axial
velocity perturbation from laminar flow with contours from −0.55 (dark) to 0.5 (light) for the
DNS, and −0.4 to 0.35 for the TW, with a step of 0.15. The arrows indicate the cross-stream
velocity, scaled on magnitude (maximum 0.15 U ). The middle row shows the streak structure
over the wavelength of the TW, with contours of axial velocity at ±0.3 U (light/dark). The
bottom row shows the axial vorticity, with contours at ±0.6 U/D (light/dark).
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Figure 9. Itot and Iuv (inset) as a function of time for TWs 2b 0.625 (dashed line) and 2a 1.25
(solid line) starting at TW 4b 3.125. Dots label the times of probable closest visits to each TW
(times ‘2’ and ‘3’ coincide with those in figure 5).

streamwise independent. Surprisingly, there is little similarity between the inner slow
streak structures. The axial vorticity is a convenient, but particularly discriminating,
way of probing the cross-stream velocity fields as it involves taking derivatives. Given
the low value of Iuv , the poor comparison is expected; however, there is evidence that
the DNS flow and the TW have roughly the same wavelength of variation.

During the dominantly four-fold symmetric phase, there is also evidence for visits
to 2b 0.625 and 2a 1.25 (labelled ‘2’ and ‘3’) shown in figure 9. A further way to
characterize the extent of all these visits is to compare the kinetic energy and wall
shear stress of the flow across the length of the pipe used for matching with the values
associated with the TW. These data are collected in figure 5. The relative closeness of
these points to the corresponding values for the TW (e.g. ‘5’ and 3a 3.125) is further
supporting evidence of a visit.

Runs started at upper-branch TWs with either sign of unstable eigenfunction lead
to turbulent-looking trajectories. Figure 10 shows one of these runs starting with
3b 3.125. Just as in the case of 4b 3.125, the initial rotational symmetry of the flow
lingers for a substantial time. During this phase, there is clear evidence of close visits
to 3b 2.5, 3c 2.5 and 3j 2.5 (see figure 11). The first visit is particularly significant as
the structural overlap between the initial TW (3b 3.125) and the visited TW (3b 2.5)
is low: by point ‘1’, both Itot and Iuv for 3b 2.5 have risen from ≈ 0.4 to near 0.8 in
just over 50 D/U . Figure 12, which compares the initial condition, the DNS flow at
point ‘1’ and the TW 3b 2.5, confirms that the flow makes a significant adjustment
to match with the new TW.

After a time of about 125D/U (see figure 13) the flow switches to being more
two-fold symmetric. The flow then successively visits 2a 1.25 and 2b 1.875 before
relaminarizing at a time 350 D/U . Point 4 gives a very good comparison between the
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Figure 10. The disturbance kinetic energy per unit mass in units of U 2 versus wall shear
stress τ in units of −8ρU 2/Re for uDNS starting at the upper branch TW 3b 3.125(+) (�).
The laminar state is represented by the point (1, 0). All the TWs present are also plotted: 	,
two-fold TWs; +, three-fold TWs; �, four-fold TWs. The numbered dots correspond to the
times of visits as determined by examining Itot and Iuv . In chronological order: 1 – 3b 2.5
(rightmost �); 2 – 3j 2.5 (leftmost �); 3 – 3c 2.5 (middle �); 4 and 6 – 2a 1.25 (large triangle);
5 and 7 – 2b 1.875 (solid triangle).
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Figure 11. Itot and Iuv (inset) as a function of time for TWs 3b 2.5 (solid line), 3c 2.5 (dotted
line) and 3j 2.5 (dashed line) starting at TW 3b 3.125. The dots label the times of closest visits
(numbers correspond to points in figure 10).
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Figure 12. Comparison plots of the starting TW 3b 3.125 (top), the DNS flow (middle) and
the TW 3b 2.5 (bottom) at point 1 in figure 11. The left-hand column shows the velocity field
at a slice where the DNS flow most matches 3b 2.5. The shading represents the axial velocity
perturbation from laminar flow, with contours from −0.55 (dark) to 0.65 (light) (top), −0.55
to 0.5 (middle), and −0.55 to 0.35 (bottom), with a step of 0.15. The arrows indicate the
cross-stream velocity, scaled on magnitude (maximum 0.135 U ). The right-hand column shows
the axial structure over a wavelength. Two contours of the axial velocity are shown at ±0.3 U
(light/dark).
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Figure 13. Itot and Iuv (inset) as a function of time for TWs 2a 1.25 (dashed line) and
2b 1.875 (solid line) starting at TW 3b 3.125. The dots label the times of closest visits
(numbers correspond to points in figure 10).
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Figure 14. (a) The correlations Itot(z) (upper line) and Iuv(z) (lower line) over the wavelength
of TW 2a 1.25 with the highest correlation of Iuv at point 4 in figure 13. Itot(z) and Iuv(z) give
the correlations for a cross-section with integration in the inner product performed over s and
θ . (b) The azimuthal distribution of the wall shear stress in units of −8ρU 2/Re at the axial
position of maximum Itot(z) and Iuv(z) near z = 1.5. From the top at the left of the plot, the
lines correspond to the axial stress from the DNS solution and that from the TW (minus the
laminar value of one), and the azimuthal stress from the DNS solution and that from the TW.

the DNS flow and the TW 2a 1.25 because the correlation functions Itot and Iuv are
simultaneously large within the comparison wavelength: see figure 14 at z ≈ 1.5. The
velocity plots (see figure 15) are very similar, even up to the same vortex in the top
left-hand quadrant of the cross-sectional snapshots.
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Figure 15. Comparison plots of the DNS flow (left-hand column) and the TW 2a 1.25
(right-hand column) at point 4 in figure 13. The top row shows the velocity fields at the
streamwise position of maximum Itot shown in figure 14 (z ≈ 1.5). The shading represents
the axial velocity perturbation from laminar flow with contours from −0.55 (dark) to 0.5
(light), with a step of 0.15. The arrows indicate the cross-stream velocity, scaled on magnitude
(maximum 0.098 U ). The middle row shows the streak structure over the wavelength of the
TW, with contours of axial velocity at ±0.3 U (light/dark). The bottom row shows the axial
vorticity, with contours at ±0.8 U/D (light/dark).
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In figure 10, point 5 is flagged as a match to TW 2b 1.875 as this TW has
the largest correlation to the flow at this point, with Itot = 0.63 and Iuv = 0.61.
However, this is not the only TW that satisfies the criterion for a good match.
Specifically, TW 2a 1.25 has Itot = 0.58 and Iuv = 0.49. Also, 2a 1.25 is closer to
point 5 than 2b 1.875 in figure 10. That both of these TWs show a high correlation
with the flow is not surprising as the TWs also show a high correlation (matching
2b 1.875 to 2a 1.25 gives Itot = 0.53 and Iuv = 0.62). Figure 16 shows a comparison
between the flow at point 5 and the two travelling waves. In general, figure 16
suggests that there is better agreement between TW 2a 1.25 and the flow than
2b 1.875, despite the fact that it has a lower correlation as measured by Itot and
Iuv . That this can occur is not unexpected since Itot and Iuv are measures of shape
and not amplitude. Figure 16 and the position of the TWs in figure 10 suggests
there is a better agreement in amplitude between 2a 1.25 and the flow than with
2b 1.875.

No significant correlations were found with any four-fold TWs as the correlation
functions Itot � 0.3 and Iuv � 0.45 throughout the evolution. This was a persistent
finding in all the other runs where a two-fold or three-fold symmetric TW was used
to initiate the flow. Even when the flow was started by a four-fold symmetric TW,
correlations with other four-fold symmetric TWs would be significant only in the
initial phase of the flow evolution where the seeding symmetry is still present. In
contrast, certain two-fold and three-fold TWs were consistently visited regardless of
how the flow was initiated. The fact that the four-fold symmetric TWs have a higher
wall-shear-stress-to-kinetic-energy ratio than the flow seems to adopt is indicated by
figures 5 and 10 and equivalent plots for other starting TWs (not shown). The flow
never seems to visit the part of phase space where the four-fold TWs are, unless
specifically inserted, whereas some of the two-fold and three-fold symmetric TWs are
in the active part of phase space populated by turbulent trajectories. This is probably
a feature of the transitional Reynolds number used here as evidence for four-fold
TWs has been found experimentally in fully turbulent flow at Re = 3000 (Hof et al.
2004). It may be that the part of phase space populated by the turbulent dynamics
expands to encompass some four-fold symmetric waves by the time Re increases to
this value.

Information about which TWs are visited in each of the 12 turbulent runs (8
starting from upper-branch TWs and 4 from lower-branch TWs) is summarized in
tables 2 and 3. The criterion used to indicate a visit is Itot > λ and Itot + Iuv > 2λ
with λ=0.5 and λ=0.6 for a closer visit. There is a strong correlation between
the rotational symmetry of the starting TW and the waves subsequently visited, even
when the initial transient – defined as the period when Itot for the initial TW decreases
(typically of O(30D/U ) in duration) – is not considered. For instance, runs 1, 2, 5 and
10 (see table 2) show no evidence of visits to TWs with different rotational symmetry.
However, across this suite of runs, all the TWs are visited at least once except for the
three TWs 3a 1.25, 3b 1.25 and 3c 1.25. Table 3 shows the more discerning results
of considering only times when the flow leaves the rotational symmetry class of the
initial TW. Examples of when this occurs have already been discussed in run 4 (at
about 130 D/U : see figure 7) and in run 7 (at about 125 D/U ; see figure 13). This
makes clear that the four-fold rotationally symmetric TWs are never visited except
when the run is specifically started near one of these TWs (runs 4, 11 and 12) whereas
two-fold and three-fold symmetric TWs are visited regardless of the starting symmetry
(e.g. runs 3, 6, 7 and 9).



88 R. R. Kerswell and O. R. Tutty

–0.5 0 0.5 1.0–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6

S
he

ar
 s

tr
es

s

θ

–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6
θ

–0.5 0 0.5 1.0–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

–0.5 0 0.5 1.0–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

–0.5 0 0.5 1.0–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

Figure 16. Comparison of the flow at point 5 in figure 10 with TWs 2b 1.875 (left-hand
side) and 2a 1.25 (right-hand side). The top row shows the velocity fields for the TWs at
the streamwise position of maximum correlation over a cross-section of the pipe, the middle
row the DNS flow, and the bottom row the wall shear stress (in units of −8ρU 2/Re) at the
same position. The shading represents the axial velocity perturbation from laminar flow with
contours from −0.55 (dark) to 0.5 (light) (right column), −0.4 to 0.2 (top left), and −0.7 to
0.65 (middle left), with a step of 0.15. The arrows indicate the cross-stream velocity, scaled
on magnitude (maximum 0.162 U ). For the wall shear stress, the top two lines show the axial
stress (minus the laminar value of one) and the bottom two lines the azimuthal stress. For
both the axial and azimuthal stress, the line with the largest peak is for the DNS solution,
and the other (more regular) line from the TW.
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TW Run 1 2 3 4 5 6 7 8 9 10 11 12

2a 0.625 ◦ ◦
2b 0.625 ◦ ◦
2a 1.25 • ◦ � � • ◦
2b 1.25 � • • ◦

2a 1.875 • ◦ • • •
2b 1.875 • ◦ • • •

3a 1.25
3b 1.25
3c 1.25

3a 1.875 • ◦ ◦ ◦
3b 1.875 ◦
3c 1.875 • • ◦ ◦ • •
3d 1.875 ◦ ◦ ◦
3e 1.875 ◦ ◦ ◦ ◦ ◦

3a 2.5 � • ◦ • ◦ ◦
3b 2.5 • • • • • • •
3c 2.5 • • ◦ • • • •
3d 2.5 ◦ • ◦ ◦ ◦ • ◦ •
3e 2.5 ◦ ◦
3f 2.5 • • • • ◦ •
3g 2.5 • • • • ◦ •
3h 2.5 • � ◦ ◦ ◦ ◦
3j 2.5 • • • • � �

3a 3.125 ◦ • ◦ ◦ • • ◦ •
3b 3.125 • • � � • •
3c 3.125 • • ◦ ◦ • • • •
3d 3.125 ◦
3e 3.125 ◦ ◦ ◦ ◦ ◦

4a 2.5 • • •
4b 2.5 ◦ ◦ ◦
4c 2.5 ◦ ◦

4a 3.125 • • •
4b 3.125 � ◦
4c 3.125 • � �
4d 3.125 • • •
4e 3.125 • • •
4f 3.125 • • •

Table 2. Summary of visits for the 12 transitional runs (4 starting at lower-branch TWs +
8 starting at upper-branch TWs) which have turbulent episodes (data set A). TWs visited
using the criterion Itot � 0.5 and Itot + Iuv � 1 at least once in a given run have the symbol
◦ entered under that column against them (� indicates the starting TW). • indicates that
the higher threshold of Itot � 0.6 and Itot + Iuv � 1.2 is satisfied. The initial transient as
the flow moves away from the starting TW – typically of O(30 D/U ) duration – is not
considered. The code for the run numbers is: 1, 2b 1.25(−) (where (−) indicates the sign of the
eigenfunction perturbation); 2, 3a 2.5(+); 3, 3h 2.5(+); 4, 4b 3.125(+); 5, 6, 2a 1.25(+/−); 7,
8, 3b 3.125(+/−); 9, 10, 3j 2.5(+/−); 11, 12, - 4c 3.125(+/−).

3.1. Frequency of visits

Given the evidence above that the TWs are visited, the next question is how frequently.
To answer this, ‘visit’ statistics were compiled across a number of different runs which
exhibited turbulent episodes. Ideally, these should be composed from one very long –
e.g. O(10 000 D/U ) – turbulent run but, as discussed already, none could be generated
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TW Run 1 2 3 4 5 6 7 8 9 10 11 12

2a 0.625 ◦ 0.83 0.86 0.98 0.86
2b 0.625 0.79 0.91 0.91 0.89 0.87
2a 1.25 ◦ ◦ � � • 0.89 ◦
2b 1.25 � 0.81 0.94 0.95 ◦

2a 1.875 ◦ 0.91 ◦ 0.88 ◦ • 0.75 0.87
2b 1.875 ◦ ◦ 0.92 ◦ • 0.86 0.97 0.95

3a 1.25
3b 1.25
3c 1.25

3a 1.875 0.77
3b 1.875
3c 1.875
3d 1.875
3e 1.875

3a 2.5 � 0.86 0.96 0.71
3b 2.5 0.89 ◦ 0.91 0.98 • 0.88 0.85
3c 2.5 ◦ 0.87 0.85 ◦
3d 2.5 ◦ 0.75 ◦ ◦ 0.95
3e 2.5
3f 2.5
3g 2.5 0.73
3h 2.5 0.90 � 0.83 0.93
3j 2.5 0.83 � �

3a 3.125 ◦ 0.88 ◦ 0.88 ◦ 0.97
3b 3.125 � �
3c 3.125 0.87 ◦ 0.90 ◦ 0.86 ◦ 0.87
3d 3.125
3e 3.125

4a 2.5
4b 2.5
4c 2.5

4a 3.125
4b 3.125 �
4c 3.125 � �
4d 3.125
4e 3.125
4f 3.125

Table 3. As for table 2 except now only times when the flow has left the symmetry class
of the starting TW are considered (data set B). Also, numerical values are recorded of
Itot + Iuv in all near-miss instances where Itot > 0.5, but ◦ (λ= 0.5) or • (λ=0.6) is not
warranted.

at this Re where the TWs are available. As a result, two strategies for quantifying
the TW visit frequency were undertaken. The first involved piecing together all the
turbulent episodes produced during the suite of 5D runs described above. The second
was to generate longer turbulent data sets in a double-length 10D pipe; for relatively
short pipes, the length of pipe appears to have a significant effect on the time for which
turbulence is sustained, as can be seen from table 4. These latter runs were almost
exclusively initiated by randomly selected velocity fields taken from a long turbulent
coarse-grid run (see table 4). The coarse grid is too underresolved to reproduce the
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Turbulent duration Resolution
Pipe lengt Run in D/U Initiation (N, M,K)

5D 1 433 (673) 2b 1.25(−) (50,60,60)
2 327 (554) 3a 2.5(+) (50,60,60)
3 340 (517) 3h 2.5(+) (50,60,60)
4 147 (251) 4b 3.125(+) (50,60,60)
5 195 (385) 2a 1.25(+) (50,60,60)
6 397 (609) 2a 1.25(−) (50,60,60)
7 153 (265) 3b 3.125(+) (50,60,60)
8 263 (400) 3b 3.125(−) (50,60,60)
9 90 (257) 3j 2.5(+) (50,60,60)

10 18 (133) 3j 2.5(−) (50,60,60)

10D 1 879 T (50,48,80)
2 1131 T (50,48,80)
3 390 T (50,48,80)
4 488 T (50,48,80)
5 349 T (50,48,80)
6 1446 T (50,48,80)
7 1182 T (50,48,80)
8 229 2b 1.25(-) (50,60,120)
9 335 T (50,60,120)

10 390 T (50,60,120)
11 586 T (50,60,120)
12 642 T (50,60,120)
13 558 T (50,60,120)
14 265 T (50,60,120)
15 640 T (50,60,120)
16 1135 T (50,60,120)

Table 4. The various runs used to produce the ‘visit’ statistics. The 5D data comes from
initiating the code with a disturbed TW and two ‘turbulent’ duration times are given. The first
is measured from when the flow leaves the initial symmetry class of the TW (used for data set
B) whereas the second, larger figure (in parentheses) is based on when the correlation function
for the starting TW stops decreasing which is a much weaker condition that occurs earlier
(used for data set A). The 10D runs are almost exclusively started using randomly selected
velocity fields from a long turbulent run generated using a coarse (25, 32, 60) grid (a strategy
labelled as T). Note that some of the 10D runs were still turbulent when these data were
gathered, whereas all the 5D runs had relaminarized.

TWs accurately and hence calculate correlation functions directly, but was adequate
for initiating turbulence in finer grid runs.

For the 5D runs started at a TW, it was necessary to decide when the flow had
left the neighbourhood of the TW and had started to behave in a turbulent fashion.
Two different criteria were adopted for this. In the first (data set A), the start of
the turbulent phase was taken as the time at which the correlation with the starting
TW had reached a minimum. This turned out to be more stringent a criterion (i.e.
produced a later time) than requiring that the flow trajectory merely enter the part of
the (KE, τ )-plane occupied by the turbulent state. In the second (data set B), the start
of the turbulent phase was taken as when the flow broke out of the initial rotational
symmetry class of the starting TW (e.g. for run 4 this occurs at about 130D/U : see
figure 7). In both cases, the end of the turbulent phase was estimated well by when
the flow trajectory left this ‘turbulent’ (KE, τ )-area. The subsequent relaminarization
phase was easily identified with both the perturbation kinetic energy and wall stress
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Figure 17. Joint p.d.f. of Itot and Iuv calculated over the turbulent episodes of all 5D runs
started at the eight upper- and lower-branch TWs (the values of Itot and Iuv at a given
time are selected by finding the TW with largest value of Itot). Contours are drawn at
0.01, 0.1, 0.3, 0.5, 0.7 and 0.9 of the maximum value. The dashed lines cordon off the visit
region defined by Itot > 0.5 and Itot + Iuv > 1.

decaying monotonically down to their laminar values (e.g. see figures 5 and 10). These
strategies produced correlation data sets lasting 4154 D/U (A) and 2363D/U (B).
For each, a joint probability density function was then computed for Itot and Iuv

corresponding to the TW with the largest Itot at a given time (see figures 17 and 18).
There is a clear positive correlation between Itot and Iuv and significant evidence for
recurrent TW visits. Comparing the two p.d.f.s, there are many close visits during the
interval after the initial transient, but before the rotational symmetry class of the flow
changes. This is presumably the result of the flow percolating out of the specific TW
region in which it is initially inserted. As a result, the p.d.f. from data set A is likely
to overestimate the visit frequency.

Using the criterion that a visit occurs if Itot > λ and Itot + Iuv > 2λ, the percentage
visit time is plotted against the quality of the visit λ in figure 19. To assess how
close a visit must be (i.e. what λ is required) to be able to predict the instantaneous
wall shear stress, figures 20 and 21 plot the instantaneous DNS wall stress (over the
matching wavelength) against the wall shear stress associated with the visited TW for
three different values of λ. The choice of seeking maximal Itot to identify the closest
TW was taken to facilitate the comparison, as this should provide the best match
between the DNS streak structure at the pipe wall with that of the TW. Even with
this, the correlation results for set A indicate that only λ � 0.7 level visits are really
good enough to start making predictions of the wall shear stress from the visited TW.
Since there are no λ=0.7 visits in set B, λ= 0.6 is used to indicate closer visits, and
better stress correlation is evident at this level compared to the λ= 0.5 results. Since
the abscissa is discretized over the 37 τTW values, each vertical strip of data in these
figures indicates that that TW has been visited. Figure 20 shows a visit bias to TWs
with larger wall stress ( � − 1.5 × 8ρU 2/Re) whereas figure 21 is oppositely skewed
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Figure 18. Joint p.d.f. of Itot and Iuv calculated over the turbulent episodes of all 5D runs
started at the eight upper- and lower-branch TWs using time episodes after the flow leaves the
initial symmetry class (the values of Itot and Iuv at a given time are selected by finding the TW
with largest value of Itot). Contours are drawn at 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9 of the maximum
value. The dashed lines cordon off the visit region defined by Itot > 0.5 and Itot + Iuv > 1.
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Figure 19. The percentage of time that a turbulent flow ‘visits’ a TW based on the criterion
Itot > λ and Itot + Iuv > 2λ as a function of λ. Statistics gathered from the 5D runs started at a
TW with only the initial transient subtracted (dashed line) and considering only times where
the flow has left the initial symmetry class of the TW (solid line with dots), together with
turbulent data compiled from various runs at 10D (solid line with crosses).
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Figure 20. A plot of the wall shear stress τDNS versus the wall shear stress τTW of the TW
being visited (τDNS is measured across the matching wavelength of the TW) for the 5D data set
A runs. The visit criteria Itot > λ and Itot + Iuv > 2λ, where λ= 0.5 (dots) indicate approximate
visits, λ= 0.7 (circles) close visits and λ= 0.9 (squares) very close visits. The thick diagonal
dashed line indicates a perfect match τDNS = τTW. The horizontal dashed line is the mean
wall shear stress across the whole pipe, the dotted lines indicate one standard deviation either
side of this mean and the limits of the vertical axis have been set to the maximum (3.2) and
minimum (1.3) wall shear stress values (in units of the laminar stress −8ρU 2/Re). Each vertical
strip of points represents one TW – the close visits only occur for upper branch solutions
where τTW > 1.3.

(� −1.5 × 8ρU 2/Re) to lower wall stress TWs. A possible explanation for this is set
A is dominated in a 2-to-1 ratio with runs started by upper-branch TWs compared to
lower-branch TWs. In the initial adjustment phase where the flow trajectory gradually
leaves the vicinity of the initial TW, the flow visits other TWs and these are more
likely to be upper- rather than lower-branch solutions in the neighbourhood of an
initial upper-branch solution. The reason lower-branch TWs feature more in set B
may be because the turbulent episodes considered were not long enough to desensitize
the visit statistics from the final relaminarization process where the flow preferentially
passes by lower-branch TWs. This could indicate that efforts to remove this phase
from the data may not have been wholly successful.

Further runs were carried out in a 2π/0.625 D (≈ 10D) pipe in a search for more
sustained turbulent data. Extending the spatial domain by a factor of 2 allows a
whole new set of TW wavelengths to fit into the pipe, roughly doubling the number
of allowed TWs. The correlation calculations were not extended to encompass this
enlarged set for two reasons. First, the new TWs are interspersed within the 5D set
which already sample the available solutions well. Therefore, the new TWs should have
structures very similar to the existing TW set. Secondly, the increase in the numerical
overhead: currently calculating the correlation functions takes around 50 % of the
CPU time. However, to compensate for this omission, the visit frequencies based
on half the admissible TWs could justifiably be doubled. Initial conditions were
randomly selected from an apparently sustained coarse turbulent run and used in
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Figure 21. A plot of the wall shear stress τDNS versus the wall shear stress τTW of the TW
being visited (τDNS is measured across the matching wavelength of the TW) for the 5D data set
B runs. The visit critera are Itot > λ and Itot+Iuv > 2λ, where λ= 0.5 (dots) indicate approximate
visits, λ= 0.6 (circles) close visits. There are no very close (λ=0.9) visits. The thick diagonal
dashed line indicates a perfect match τDNS = τTW. The horizontal dashed line is the mean
wall shear stress across the whole pipe, the dotted lines indicate one standard deviation either
side of this mean and the limits of the vertical axis have been set to the maximum (2.4) and
minimum (1.325) wall shear stress values (in units of the laminar wall stress −8ρU 2/Re). Each
vertical strip of points represents one TW. For λ= 0.5, the TWs visited are 2a 1.25, 2b 1.875,
3b 2.5, 3a 3.125 and 3c 3.125. The TWs closely visited (λ=0.6) are 2a 1.25, 2b 1.875 and
3b 2.5.

intermediate- and fine-grid runs (see table 4). The statistics across the accumulated
5865 D/U long intermediate grid turbulent data were similar to those across the
accumulated 4780 D/U long fine-grid turbulent data, so the sets were merged to
give one large data set over 10 000 D/U in duration. The joint p.d.f. of (Itot, Iuv)
shown in figure 23 resembles that from the 5D data set B as does the wall stress
comparison during visits shown in figure 24. Again, the most visited TWs look to
be those with lower wall stresses and essentially the same subset of TWs are visited
closely – 2a 1.25, 2b 1.875 and 3b 2.5 in the 5D data compared to 2a 1.25, 2b 1.875,
3b 2.5 and 3c 3.125 in the 10D data. Figure 22 shows an example of a visit to 2a 1.25
during a typical turbulent episode in this suite of runs. Significantly, no four-fold
symmetric TWs were visited in the 10D runs, reinforcing the observation made in the
5D work that these TWs are not in the same part of phase space as that populated
by a turbulent flow.

Figure 19 brings together the results of the frequency analysis by comparing the
visit percentage as a function of visit quality (λ) for the three data sets. Doubling
the 10D frequency data (as only half the possible TWs are considered) brings the
observed visit frequency more into line with the results from the 5D data set B at
λ= 0.5. Taken together, they suggest that TWs are visited for approximately 10 %
of the time in turbulent pipe flow. Using Itot > λ as the criterion for a visit would
increase the frequency of visits, by, in effect, ignoring the cross-stream component of
the flow and considering the streamwise (streak) structure only.
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Figure 22. Comparison plots of the DNS flow (left-hand column) and the TW 2a 1.25
(right-hand column) captured during a turbulent fine grid run in a 10D pipe. The top row
shows the velocity fields at the streamwise position of maximum correlation over a cross-section
of the pipe. The shading represents the axial velocity perturbation from laminar flow with
contours from −0.7 (dark) to 0.35 (light) for the DNS, and −0.55 to 0.5 for the TW, with a step
of 0.15. The arrows indicate the cross-stream velocity, scaled on magnitude (maximum 0.13 U ).
The middle row shows the streak structure over the wavelength of the TW, with contours of
axial velocity at ±0.3 U (light/dark). The bottom row shows the axial vorticity, with contours
at ±0.8 U/D (light/dark).
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Figure 23. Joint p.d.f. of Itot and Iuv calculated over the turbulent episodes of all 10D runs
(the values of Itot and Iuv at a given time are selected by finding the TW with largest value of
Itot). Contours are drawn at 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9 of the maximum value. The dashed
lines cordon off the visit region defined by Itot > 0.5 and Itot + Iuv > 1.
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Figure 24. A plot of the wall shear stress τDNS versus the wall shear stress τTW of the TW
being visited (τDNS is measured across the matching wavelength of the TW) for the 10D runs.
The visit criteria are Itot > λ and Itot + Iuv > 2λ, where λ= 0.5 (dots) indicates approximate
visits and λ= 0.6 (circles) closer visits (there are no λ=0.7 visits). The thick diagonal dashed
line indicates a perfect match τDNS = τTW. The horizontal dashed line is the mean wall shear
stress across the whole pipe, the dotted lines indicate one standard deviation either side of this
mean and the limits of the vertical axis have been set to the maximum (2.62) and minimum
(1.24) wall shear stress values (in units of the laminar wall stress −8ρU 2/Re). Each vertical
strip of points represents one TW. For λ= 0.5, the TWs visited are 2a 1.25, 2b 1.25, 3c 1.25,
2a 1.875, 2b 1.875, 3c 1.875, 3b 2.5, 3c 2.5, 3d 2.5, 3a 3.125 and 3c 3.125. The TWs closely
visited (λ=0.6) are 2a 1.25, 2b 1.875, 3b 2.5 and 3c 3.125.
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Figure 25. The disturbance kinetic energy per unit mass in units of U 2 versus wall shear stress
τ in units of −8ρU 2/Re for uDNS for two 10D runs started from a coarse grid turbulent run.
The solid line is for an intermediate (50, 48, 80) grid run and the dashed line a fine (50, 60, 120)
grid run. The laminar state is represented by the point (1, 0). All the TWs are also plotted: +,
two-fold TWs, ×, three-fold TWs, and �, four-fold TWs.

Figure 25 shows the perturbation kinetic energy and the mean wall shear stress for
a 10D pipe for one of the intermediate- and fine-grid runs started from coarse-grid
turbulent data. This shows that the turbulent flow in this pipe is concentrated in a
small patch of the (KE, τ )-space, with both grids occupying the same region of the
space. The other intermediate- and fine-grid turbulent runs are also concentrated in
this region. Coarse grid turbulent runs occupy a somewhat different region of the
(KE, τ )-space with lower values of both variables. Both the intermediate and fine grid
have the same radial resolution (N =50). A test run was performed with the same
grid in θ and z as the intermediate grid, but an increased resolution in s (N = 75).
Again, the flow occupied the same region in the (KE, τ )-space.

Figure 26 shows power spectra of the surplus kinetic energy and the wall shear
stress for turbulent flow in a 10D pipe. The spectra were generated by taking the
data for the four longest fine-grid runs that were started from coarse-grid turbulent
data, with a sample time of 782.1D/U . A Hanning window was applied, with the
windowed data scaled so that the variance matches that of the original data, and the
spectra were generated by averaging over the four samples. The spectra show a peak,
corresponding to a period of approximately 98D/U which suggests a periodic orbit
embedded in the turbulent dynamics (the intermediate grid data produced spectra
consistent with those for the fine grid, while the coarse grid also produced a peak,
but at a higher frequency). This is currently under investigation.

4. Discussion
At this point it is worth cataloguing the achievements of this investigation.
(a) Using the travelling waves already known as starting points, all related

travelling-wave solutions (TWs) of varying wavelengths and azimuthal symmetries
which exist at Re =2400 have been traced out (figures 1 and 2). They naturally
partition into three distinct classes of particular rotational symmetry about the
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Figure 26. The power spectra of disturbance kinetic energy (multiplied by 5000) in units
of U 3D (dashed) and wall shear stress in units of 4UD/Re2 (solid) versus frequency. The
maximum in the spectra corresponds to a period of approximately 98 in units of D/U .

axis – two-fold, three-fold and four-fold symmetric TWs – and 37 in total fit into a
π/0.625 (≈ 5) D periodic pipe.

(b) The linear stability of four ‘lower branch’ TWs (TWs with some of the lowest
wall stresses of the 37) and four ‘upper branch’ solutions (TWs with the some of the
highest wall stresses of the 37) has been carried out. All are inertially unstable and
therefore saddles in phase space with growth rates typically of the size O(0.1 U/D)
and all have very low dimensional unstable manifolds.

(c) All the lower-branch solutions considered appear to sit on a surface which
separates initial conditions which uneventfully relaminarize and those which lead to a
turbulent-looking evolution. The fact that lower-branch solutions may be part of such
a dividing surface has been suggested before, but here we provide systematic evidence
of multiple embeddings. The surface – formally a separatrix if the turbulence is a
sustained state – then minimally appears as a union of lower-branch TWs and their
stable manifolds. In contrast, initial conditions near all the upper-branch solutions
tested invariably become turbulent.

(d) Turbulence in a 5D periodic pipe at Re= 2400 may be long-lived, but ultimately
appears only transient. Turbulence also seems transient in a 10D pipe at Re = 2400,
but the transients have, on average, a longer life. The mean lifetime of a turbulent
episode is sensitive to the numerical resolution used, with turbulence appearing to
last longer, if not sustained, in underresolved calculations.

(e) Clear numerical evidence is found that travelling waves are visited during
transitional flows which corroborates the experimental observations of Hof et al.
(2004). As in the experiments, the dominant recognizable feature of these visits is
the appearance of an outer ring of equally spaced fast streaks. The more variable
slow-streak structure towards the pipe axis is less clearly reproduced.

(f ) A number of different correlation functions were experimented with to measure
how ‘close’ a given perturbation velocity field is to that of a TW. Two, Itot and Iuv ,
were chosen and a visit criterion – Itot > λ and Itot + Iuv > 2λ – developed based on a
‘quality of visit’ parameter λ. After examining the velocity matches at various different
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levels of λ, a value of 0.5 was taken as indicating a ‘visit’, with values of 0.6 and
higher indicating a ‘close’ visit. The correlations do not measure the amplitude of
the perturbation velocity, and ancillary measures (the mean wall shear stress and the
disturbance kinetic energy per unit mass) were used to verify the match in particular
cases.

(f) Turbulent data in both 5D and 10D pipes indicate that some two-fold and three-
fold symmetric TWs are recurrently visited whereas others are not. In particular, no
evidence was found for visits to four-fold symmetric TWs at Re = 2400. The visited
TWs correspond to low-to-intermediate wall stress solutions which are embedded
in the same part of phase space as the turbulent dynamics. Other TWs are clearly
in very different phase space locations and hence are never visited unless the flow
is specifically inserted there initially (e.g. all the four-fold TWs). The fact that a
four-fold symmetric wave has been observed experimentally (Hof et al. 2004), albeit
at Re= 3000, suggests that by then the turbulent part of phase space has expanded
to encompass some of the four-fold TWs.

(g) Based on the correlation functions, Itot and Iuv , used and the visiting criterion
adopted (λ= 0.5), numerical evidence suggests that travelling waves are visited only
for about 10 % of the time in turbulent pipe flow at Re = 2400. These figures are
broadly in line with the study by Schneider et al. (2007) which quantifies the frequency
of coherent streak states near the pipe wall. They find coherent streak structures for
24 % of the time at Re = 2200 and 20 % of the time at Re = 2500, consistent with
the thinking that travelling-wave visits are a strict subset of their coherent streak
states. Above and beyond issues surrounding how a ‘visiting’ episode is determined,
the exact visiting frequency found during this work must also be qualified by the fact
that other currently unknown travelling waves may well exist, which would increase
this statistic. In fact, while this work was being completed a whole new family of
asymmetric travelling waves has been found at Re= 2400 (Pringle & Kerswell 2007)
which would, of course, increase the visit frequency.

The last finding answers the original motivating question for this study. The fact
that a turbulent flow is apparently visiting a TW only 10 % of the time implies that
it is of limited use to view turbulence purely as the random switching between the
neighbourhoods of TWs. For, say, predicting the average turbulent wall stress, an
appropriately weighted sum of all the relevant TW wall stresses seems unlikely to
work, given that so much time is spent away from the TWs in phase space. One
possible way out of this conclusion is that other phase space objects such as periodic
orbits (perhaps glimpsed in figure 26) should be included in any such expansion.
Alternatively, if the time spent away from coherent flow features is truly significant,
then some sort of weighted mixture of statistics describing the coherent and incoherent
flow phases seems inescapable.
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Jiménez, J. & Simens, M. P. 2001 Low-dimensional dynamics in a turbulent wall flow. J. Fluid
Mech. 435, 81–91.
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